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This tutorial presentation will give …
(1) an overview of methods for in situ studies of ALD processes &

reaction mechanisms; and
(2) some insight into these processes and mechanisms

Don’t expect:
• A comprehensive overview
• Techniques explained in large detail

Do expect:
• Focus on what can be learned from the methods
• Their pros and cons articulated & practical comments
• An overview based mainly from own experience

Department of Applied Physics – Erwin Kessels

For more information & feedback
see blog:

www.AtomicLimits.com



Atomic layer deposition (ALD)
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t In situ studies:

• Quartz crystal microbalance
• Spectroscopic ellipsometry
• Mass spectrometry
• Gas phase infrared spect.
• Surface infrared spect.
• Optical emission spect.
• X-ray photoelectron spect.
• X-ray diffraction
• Sum-frequency generation
• Adsorption calorimetry
• Scanning tunneling micros.
• …
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Monitoring (linear) film growth 
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Elam et al., Rev. Sci. Instr. 73, 2981 (2002).
Langereis et al., J. Phys. D: Appl. Phys. 42, 073001 (2009).

Ellipsometry
QCM

Al2O3

Al2O3:      1.1 Å
Ta2O5:      0.8 Å
TiO2:     0.04 Å

Material Growth per cycle

Al2O3 1.2 Å (100 °C)

Ta2O5 0.80 Å (225 °C)

TiO2 0.45 Å (200 °C)

AB cycles



ALD saturation curves
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H2O dose (ms)
0 1 2 3

 Purge time (s)

Al(CH3)3 precursor Purge H2O reactant Purge

ALD of Al2O3 from Al(CH3)3 and H2O (200 ⁰C)

20 ms – 2 s   – 40 ms – 1 s
Al(CH3)3  – purge  – H2O  – purge

Vary one parameter while keeping other constant:



Quartz crystal microbalance (QCM)
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• Cheap device and relatively easy-to-implement on many reactors
• Directly measures mass gain/loss in quantitative way
• Very helpful for process development
• Very sensitive to variations in pressure, gas flows and temperature

Measures mass variation of a quartz crystal resonator from its frequency change

Precursor  
Reactant

Pump

QCM sensor = quartz crystal 
in resonator housing

QCM 1

QCM 2

Elam et al., Rev. Sci. Instr. 73, 2981 (2002).
Rocklein and George, Anal. Chem. 75, 4975 (2003).



Quartz crystal microbalance (QCM)
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• Cheap device and relatively easy-to-implement on many reactors
• Directly measures mass gain/loss in quantitative way
• Very helpful for process development
• Very sensitive to variations in pressure, gas flows and temperature

Measures mass variation of a quartz crystal resonator from its frequency change



QCM – Monitoring mass gain (Al2O3)

Department of Applied Physics – Erwin Kessels Elam et al., Rev. Sci. Instr. 73, 2981 (2002).
Wind et al., J. Phys. Chem. A 114, 1281 (2010).

s-OH

s-OAl(CH3)x s-AlOH

s-AlCH3

Mass gain/loss can be monitored 
per half-cycle



Spectroscopic ellipsometry (SE)
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• Directly measures thickness, very helpful for (fast) process development
• Yields also insight into many other material properties (optical/electrical)
• Optical modelling can be challenging for some layers/materials
• Rather expensive and requires special ports for optical access

Measures change of polarization of light upon reflection (multiple wavelengths)

Precursor 
Reactant

Pump

Broadband 
light source 

+
polarizers

Polarizers 
+

spectrograph 
+ 

detector

Window 
+

Protection 
valve

Window 
+

Protection 
valve

Langereis et al., J. Phys. D: Appl. Phys. 42, 073001 (2009).
See blog post about ellipsometry & ALD at www.AtomicLimits.com



Spectroscopic ellipsometry (SE)
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Measures change of polarization of light upon reflection (multiple wavelengths)

www.cambridgenanotechald.com
See blog post about ellipsometry & ALD at www.AtomicLimits.com

• Directly measures thickness, very helpful for (fast) process development 
• Yields also insight into many other material properties (optical/electrical) 
• Optical modelling can be challenging for some layers/materials
• Rather expensive and requires special ports for optical access



Spectroscopic ellipsometry – Saturation (TiN)
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Langereis et al., J. Phys. D: Appl. Phys. 42, 073001 (2009).

TiN

Monitor film thickness while changing precursor/reactant dosing time
provides a fast method to determine saturation curves



Spectroscopic ellipsometry – Nucleation (Pt)
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100 nm

ALD of Pt from MeCpPtMe3 and O2 on “foreign” Al2O3 substrate (300 ⁰C)

Mackus et al., Chem. Mater. 25, 1905 (2013).

Nucleation 
delay on 

Al2O3



Spectroscopic ellipsometry – Resistivity (Pt)
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ALD of Al2O3 [Case study]
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s-OH*+ Al(CH3)3 s-OAl(CH3)2 + CH4

s-AlOH + CH4s-AlCH3* + H2O

Prototypical ALD process

Precursor: Al(CH3)3

Reactant: H2O

Temperature: 25-400 ⁰C

A - 1st Half Cycle

B - 2nd Half Cycle

Simplified reaction scheme:



Mass spectrometry ― Reaction products (Al2O3)
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Gas phase reaction products
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Al(CH3)3 dosing: CH4

H2O dosing: CH4

Vandalon and Kessels, J. Vac. Sci. Technol. A 35, 05C313 (2017).



Quadrupole mass spectrometry (QMS)
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• Easy-to-implement on all types of reactors (with differential pumping)
• Wide range of species can be detected (but heavy masses difficult)
• All reaction products measured (not only from substrate)
• QMS cracks molecules into fragments complicating data interpretation

Precursor  
Reactant

Pump

Mass filter

Detector

Valve
with 

pinhole

Pump (p < 10-5 Torr)

Ionization of gas extracted from the reactor & mass filtering of the ions



Quadrupole mass spectrometry (QMS)
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• Easy-to-implement on all types of reactors (with differential pumping)
• Wide range of species can be detected (but heavy masses difficult)
• All reaction products measured (not only from substrate)
• QMS cracks molecules into fragments complicating data interpretation

Ionization of gas extracted from the reactor & mass filtering of the ions



Mass spectrometry ― Reaction products (Al2O3)
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Vandalon and Kessels, J. Vac. Sci. Technol. A 35, 05C313 (2017).

Mass spectrometry probes mass/charge ratios



Gas-phase infrared spectroscopy (FTIR)
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• Calibration is quite straightforward to yield absolute densities
• High sensitivity for certain species but not all species can be detected
• All reaction products measured (not only from substrate)
• Confinement of reaction products might be necessary for sufficient S/N ratio 

Absorption of infrared light (from FTIR interferometer) by rovibrational transitions

Precursor  
Reactant

Pump

IR light source 
+

Interferometer 
IR detector 

IR window 
+

Protection 
valve

IR window 
+

Protection 
valve



Gas-phase infrared spectroscopy (FTIR)
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• Calibration is quite straightforward to yield absolute densities
• High sensitivity for certain species but not all species can be detected
• All reaction products measured (not only from substrate)
• Confinement of reaction products might be necessary for sufficient S/N ratio

Absorption of infrared light (from FTIR interferometer) by rovibrational transitions



Department of Applied Physics – Erwin Kessels Vandalon and Kessels, J. Vac. Sci. Technol. A 35, 05C313 (2017).

Gas-phase FTIR ― Reaction products (Al2O3)



QMS and gas-phase FTIR installed in exhaust
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Precursor  
Reactant

Pump

Mass 
Spectrometer

(p < 10-5 Torr)

Infrared gas 
cell

(p up to 1 atm)

IR light source 
+

Interferometer 

IR detector 

Can quite easily be implemented in industrial (spatial) ALD equipment



Gas-phase FTIR in exhaust of spatial ALD setup
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Reaction products:                              
O3, combustion products and CH4
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H2OCH4
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O3
H2O

Spectrum of O2 plasma reactant step during 
plasma-assisted spatial ALD of Al2O3

Mione et al., to be published (2018). 



Surface infrared spectroscopy (FTIR)
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• Direct measurement of surface groups created, removed or incorporated
• Probes only surface groups which are changing every (half-)cycle
• Poor S/N ratio for some species – long integration times required
• Requires dedicated reactor with optical access and IR-transparent substrate

Precursor  
Reactant

Pump

IR light source 
+

Interferometer 
IR detector 

IR window 
+

Protection 
valve

IR window 
+

Protection 
valve

Absorption of infrared light by vibrational transitions by (surface) groups

Chabal et al., Surf. Sci. Rep. 8, 211 (1988).



Various configurations infrared spectroscopy
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Gas phase species Surface species - wafer

Surface species – particles
(enlarged surface area by particles)

Surface species – ATR element
(multiple reflections at surface)

Chabal et al., Surf. Sci. Rep. 8, 211 (1988).



Surface FTIR – Surface groups (Al2O3)
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Langereis et al., ECS Transactions 16, 247 (2008).

-CH3 and -OH are surface groups for both thermal and plasma ALD
Differential spectra: show changes per half cycle



Plasma-enhanced ALD of Al2O3 [Case study]
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s-OH*+ Al(CH3)3

s-AlOH + CO + CO2 + H2Os-AlCH3* + 3O

Precursor: Al(CH3)3

Reactant: O2 plasma

Temperature: 25-400 ⁰C

s-OAl(CH3)2 + CH4

A - 1st Half Cycle

B - 2nd Half Cycle

Simplified reaction scheme:
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Ar H2 N2 O2

Plasma radiation – feed gas dependent

Profijt et al., J. Vac. Sci. Technol. A 29, 050801 (2011).



Optical emission spectroscopy (OES)
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• Ideally suited for process monitoring of plasma-based processes
• Extremely easy to implement & cheap
• Yields only information about excited species – not ground state species
• Typically yields very indirect and qualitative information

Mackus et al., J. Vac. Sci. Technol. A 28, 77 (2010).

Measures (visible) radiation from excited species decaying to lower levels

Precursor 
Reactant

Pump

Optical fiber

Spectrograph
Imaging 
lenses

Spectrograph

Window
+ 

Protection valve

Option 1 Option 2



Optical emission spectroscopy (OES)

Department of Applied Physics – Erwin Kessels Mackus et al., J. Vac. Sci. Technol. A 28, 77 (2010).

• Ideally suited for process monitoring of plasma-based processes
• Extremely easy to implement & cheap
• Yields only information about excited species – not ground state species
• Typically yields very indirect and qualitative information

Measures (visible) radiation from excited species decaying to lower levels



Optical emission spectroscopy – Plasma (Al2O3)
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Heil et al., Appl. Phys. Lett. 89, 131505 (2006).
Knoops et al., Appl. Phys. Lett. 107, 014102 (2015).
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Atomic layer deposition (ALD)
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A B A B
t Discussed next:

ALD merits:
• Conformality
• Uniformity
• Growth control

Advanced methods:
• Sum-frequency generation
• Adsorption calorimetry



Conformality – Reaction- vs. diffusion-limited
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s0 << 1

s0 → 1

Knoops et al., J. Electrochem. Soc. 157, G241 (2010).
Elam et al., Chem. Mater. 15, 3507 (2003).
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Conformality test structures
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Ylilammi et al., J. Appl. Phys. 123, 205301 (2018).

Gao et al., J. Vac. Sci. Technol. A 33, 010601 (2015).

PillarHall™ LHAR structures

Fabricated by Si micromachining

= 500 nm



Conformality tests – sticking probability (Al2O3)
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See presentation Karsten Arts – AF2-Tuesday afternoon at 5 pm

Ylilammi et al., J. Appl. Phys. 123, 205301 (2018).
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Sticking probability of H2O during H2O step

Sticking probability of H2O <10-4 H2O is not very reactive with –CH3

Good agreement with sum-frequency generation (SFG, see later)



Uniformity – O3 surface loss (ZnO)

Department of Applied Physics – Erwin Kessels

0 20 40 60
0

5

10

15

20

25
 

Zn
O

 F
ilm

 T
hi

ck
ne

ss
 (n

m
)

Reactor position (cm)

150 cycles

5 s O3

10 s O3

20 s O3

Knoops et al., Chem. Mater. 23, 2381 (2011).

Zn(C2H5)2
O3

flow

Surface loss/recombination of O3

Depends on surface termination



Uniformity – O3 surface loss (ZnO)
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Growth control - initial growth on foreign surfaces
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Spectroscopic ellipsometry
ALD Al2O3 on SiO2 and Si(111):H surfaces

On foreign surfaces 
initially no “ideal”                         
ALD film growth

Additional insight is 
necessary for

• Ultrathin films
• Area-selective ALD
• Etc.

Vandalon et al., to be published (2018). 



Sum frequency generation (SFG)
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• Highly sensitive & specific for surface groups (sub-surface species not probed)
• Good time resolution, reaction kinetics can be followed in time
• Can give absolute values of reaction cross-sections/sticking probabilities etc.
• Very complex method requiring highly dedicated setup with laser-system

Nonlinear optical technique with 2 laser beams probing vibrational transitions

Precursor  
Reactant

Pump

Tunable IR laser beam
(broadband, fs resolution)

800 nm laser beam
(ps resolution)

Sum-frequency radiation
(broadband, fs resolution)

Vandalon and Kessels, J. Vac. Sci. Technol. A 35, 05C313 (2017).



Sum frequency generation (SFG)
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• Highly sensitive & specific for surface groups (sub-surface species not probed)
• Good time resolution, reaction kinetics can be followed in time
• Can give absolute values of reaction cross-sections/sticking probabilities etc.
• Very complex method requiring highly dedicated setup with laser-system

Nonlinear optical technique with 2 laser beams probing vibrational transitions

Vandalon and Kessels, J. Vac. Sci. Technol. A 35, 05C313 (2017).



Sum frequency generation – Al2O3 on Si(111):H
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Si-H stretch @ 
2083 cm-1

Al(CH3)3 reacts with Si(111):H breaking the Si-H bonds

Frank et al., Appl. Phys. Lett. 82, 4758 (2003). 
Vandalon et al., to be published (2018). 

10 ms Al(CH3)3
pulses

or translated into sticking probability s0 = (1.9±0.2)x10-3

Reaction cross-section σ= (3.1±0.3)x10-18 cm2 



Initial growth of Al2O3 on SiO2 and on Si(111):H
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Spectroscopic ellipsometryInitial growth:

1st cyle on Si(111):H
s0 = (1.9±0.2)x10-3

1st cycle on SiO2

s0 = (1.2±0.1)x10-3

Steady-state growth:

x-th cycle (x>>1)
s0 = (3.9±0.4)x10-3

Vandalon et al., to be published (2018). 



Area-selective ALD (see tutorial Parsons)
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Differences in nucleation behavior (initial growth) are often exploited to 
achieve area-selective ALD

Fundamental insight (preferable with quantitative information) 
in initial growth is required

Linear growth 
on growth area

Nucleation delay
on non-growth 

area

Selective growth

Number of cycles

Th
ic

kn
es

s 

Growth area Non-growth area

Growth area Non-growth area

Mackus, ALD2017 tutorial (2017). 



Adsorption calorimetry
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• Provides additional thermodynamic and mechanistic insight
• Can be used to verify and benchmark (half-cycle) reactions – also from DFT
• New to the field of ALD – needs follow up work
• ….

Measures half-cycle reaction heats pyroelectrically using a LiTaO3 crystal disk

Precursor  
Reactant

Pump

Lownsbury et al., Chem. Mater. 29, 8566 (2017). 

QCM

Calorimeter



Adsorption calorimetry
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• Provides additional thermodynamic and mechanistic insight
• Can be used to verify and benchmark (half-cycle) reactions – also from DFT
• New to the field of ALD – needs follow up work
• ….

Measures half-cycle reaction heats pyroelectrically using a LiTaO3 crystal disk

Lownsbury et al., Chem. Mater. 29, 8566 (2017).
Photos courtesy of Alex Martinson (Argonne National Lab) 



Adsorption calorimetry – Reaction heats (Al2O3)

Department of Applied Physics – Erwin Kessels Lownsbury et al., Chem. Mater. 29, 8566 (2017).

s-OH*+ Al(CH3)3 s-OAl(CH3)2 + CH4

s-AlOH + CH4s-AlCH3* + H2O

A - 1st Half Cycle:

B - 2nd Half Cycle:

ΔH = -343 kJ/mol

ΔH = -251 kJ/mol



First-principle calculations

Department of Applied Physics – Erwin Kessels Widjaja and Musgrave, Appl. Phys. Lett. 80, 3306 (2002).

s-OH*+ Al(CH3)3 s-AlOH + CH4s-AlCH3* + H2O 

A - 1st Half Cycle B - 2nd Half Cycle

s-OAl(CH3)2 + CH4

So far calculated reaction heats have remained 
untested with respect to experiment



Concluding remarks

Department of Applied Physics – Erwin Kessels

• Various analytical tools for in situ studies of ALD have been discussed
QMS, gas phase FTIR, QCM, SE, surface FTIR, OES
Many more exist. Combine tools if you can!
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• Various analytical tools for in situ studies of ALD have been discussed
QMS, gas phase FTIR, QCM, SE, surface FTIR, OES
Many more exist. Combine tools if you can!

• Focus can be on
• Film growth & properties
• Reaction mechanisms
• Process monitoring & control



Concluding remarks
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• Various analytical tools for in situ studies of ALD have been discussed
QMS, gas phase FTIR, QCM, SE, surface FTIR, OES
Many more exist. Combine tools if you can!

• Focus can be on
• Film growth & properties
• Reaction mechanisms
• Process monitoring & control

• Take it to the next level (quantitatively!)
• Sticking probabilities
• Reaction heats
• Transient states
• ….
Combine experiments with theory/simulations!
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ALD Academy (www.ALDacademy.com)

Dr. Erwin Kessels
Dept. of Applied Physics

Eindhoven University of Technology

Dr. Gregory Parsons
Dept. of Chemical and Biomolecular Engineering

North Carolina State University
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