

Stability Testing using Low-Cost Environmental Chamber

Kean Khoo

School of Photovoltaics and Renewable Energy Engineering

Fig 3.

Internal

Humidity

Temp.

Background

Stability testing of passivated contacts is crucial for ensuring long-term performance of solar cells. Molybdenum oxide is gaining interest as a material used as a hole-selective contact. With emerging methods of depositing the material, it becomes mandatory to understand the adverse effects the atmosphere has on solar cells.

Motivation

 Large scale industrial chambers are not ideal for smaller research samples as energy and time is wasted, and experiments cannot be run simultaneously with other groups

Aims

- To find a cheaper and more efficient method for conducting temperature-humidity tests
- To investigate the effects of humidity and temperature on samples with MoO_x deposited via Thermal Evaporation or ALD

Results

Chamber Performance

- ~ 10 min temperature ramp up from R.T.P.
- Stabilisation time of ~ 1 min after closing lid
- Maintains 85 ± 5 °C and 85 ± 5 % R.H.

Stability Characterisation

- MoO_x samples degrade at accelerated rate. Immediate lifetime decreases from 1 ms to less than 200 us within 15 s, further decreasing to negligible values
- FTIR analyses indicates the loss of passivation layer, supported by evidence of decreasing Mo peak intensities and PL counts

0 sec 30 sec Mo=O 120 sec Recovery О-Н -0.2 Wavenumber (cm⁻¹)

Fig 4, FTIR signal of MoO, after total time

Fig 5, Processed signal of MoO_x

Visual inspection shows surface structure damage and deformities, with formation of spots and veins

Fig 7, Surface images of 'corrosion'

External Control System

- Control display features chamber pressure and timer for feedback
- Pre-set 'Cooking' modes minimises experiment set-up complexity
- High pressure mode adds up to 80 kPa for stress testing

Fig 1. Pressure Cooker as an Environmental Chamber

Internal Control System

- Features polycarbonate disks to restrict evaporation, controlling humidity in chamber
- Sensors allow for logging of internal condition

Fig 2. Repurposed Food Chamber

Challenges faced

- Environmental chamber lacks capability to execute advanced stability tests, such as temperature sweep and low temperature condition
- Accurate measurement of temperature and humidity is difficult to acquire without use of costly metrology equipment
- ❖ Not suitable for cells that are more durable (eg. SiN_x), as maximum running duration is 12 hr

Conclusion

- Environmental chamber is suitable for conducting tests under specific conditions
- ❖ MoO_x is more sensitive to humidity than temperature