Selective ALD of metal-oxides on noble metals through catalytic oxygen activation Nick Thissen^a (n.f.w.thissen@tue.nl), Joseph Singh^b, Woohee Kim^b, Erwin Kessels^a, Stacey Bent^b, Ageeth Bol^a, Adrie Mackus^a ### Introduction **Iron oxide (FeO_x)** and **nickel oxide (NiO_x)** find applications in catalysis, magnetic storage, solar cells, etc. Often combined with noble metals like platinum (Pt) and iridium (Ir), for example Fe/Pt alloys. Atomic layer deposition (ALD) of FeO_x / NiO_x requires **strong** oxidizing reactants (O_2 plasma, ozone). ## Selective ALD on catalytic substrates Deposition possible because of dissociative chemisorption of O₂ on Pt / Ir ## Ellipsometry results In-situ spectroscopic ellipsometry (SE) FeO_x on Pt: - Linear growth between 0.5 0.9 Å/cycle - Almost no growth on FeO_x substrate with **no Pt** - Pt still catalytic even after >20 nm FeO_x coverage? ## TEM analysis (a) Planar films: FeO_x on Pt - 300 cycles selective FeO_x ALD - Well-defined interface - FeO_x crystalline - Closed film, but high roughness #### (b) Core-shell Pt-FeO_x particles - 50 cycles selective FeO_x ALD - Closed shell of FeO_x selectively deposited on Pt core ## AES on patterned substrates Deposition on Pt / Ir patterned squares demonstrate excellent selectivity ## XPS analysis XPS depth profile shows separate FeO_x and Pt layers Binding energy (eV) Fe2p scans on SiO₂ / Al₂O₃ ## Growth of carbon nanotubes (CNTs) - a) Pt ALD for nanoparticles - Diameter control by number of cycles - b) Selective FeO_x ALD on Pt particles: - Fe/Pt alloyed particles show high activity for CNT growth - No CNTs with just Fe or just Pt. # Conclusions Demonstrated selective ALD of FeO_x / NiO_x by activation of O_2 gas on catalytic Pt / Ir. Prepared thin films and core-shell nanoparticles. Excellent selectivity, no growth on Si/SiO₂/Al₂O₃. Mechanism not fully clear → still growth after **full coverage** of the catalytic substrate? Possibly applicable to wide range of materials. Fe/Pt nanoparticles highly active for CNT growth.