

Selective ALD of metal-oxides on noble metals through catalytic oxygen activation

Nick Thissen^a (n.f.w.thissen@tue.nl), Joseph Singh^b, Woohee Kim^b, Erwin Kessels^a, Stacey Bent^b, Ageeth Bol^a, Adrie Mackus^a

Introduction

Iron oxide (FeO_x) and **nickel oxide (NiO_x)** find applications in catalysis, magnetic storage, solar cells, etc.

Often combined with noble metals like platinum (Pt) and iridium (Ir), for example Fe/Pt alloys.

Atomic layer deposition (ALD) of FeO_x / NiO_x requires **strong** oxidizing reactants (O_2 plasma, ozone).

Selective ALD on catalytic substrates

Deposition possible because of dissociative chemisorption of O₂ on Pt / Ir

Ellipsometry results

In-situ spectroscopic ellipsometry (SE) FeO_x on Pt:

- Linear growth between
 0.5 0.9 Å/cycle
- Almost no growth on FeO_x substrate with **no Pt**
- Pt still catalytic even after
 >20 nm FeO_x coverage?

TEM analysis

(a) Planar films: FeO_x on Pt

- 300 cycles selective FeO_x ALD
- Well-defined interface
- FeO_x crystalline
- Closed film, but high roughness

(b) Core-shell Pt-FeO_x particles

- 50 cycles selective FeO_x ALD
- Closed shell of FeO_x selectively deposited on Pt core

AES on patterned substrates

Deposition on Pt / Ir patterned squares demonstrate excellent selectivity

XPS analysis

XPS depth profile shows separate FeO_x and Pt layers

Binding energy (eV)

Fe2p scans on SiO₂ / Al₂O₃

Growth of carbon nanotubes (CNTs)

- a) Pt ALD for nanoparticles
- Diameter control by number of cycles
- b) Selective FeO_x ALD on Pt particles:
- Fe/Pt alloyed particles show high activity for CNT growth
- No CNTs with just Fe or just Pt.

Conclusions

Demonstrated selective ALD of FeO_x / NiO_x by activation of O_2 gas on catalytic Pt / Ir.

Prepared thin films and core-shell nanoparticles.

Excellent selectivity, no growth on Si/SiO₂/Al₂O₃.

Mechanism not fully clear → still growth after **full coverage** of the catalytic substrate?

Possibly applicable to wide range of materials.

Fe/Pt nanoparticles highly active for CNT growth.