Area-Selective Atomic Layer Deposition of In₂O₃ based on the c-Si doping level Bas van de Loo, Alfredo Mameli, Erwin Kessels Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands b.w.h.v.d.loo@tue.nl, w.m.m.kessels@tue.nl ## Download poster and related publications; ## Objective Can we obtain area-selective deposition based on the doping level of c-Si? ### Approach; Atomic-layer-deposited (ALD) of In₂O₃ as model system Example: Back-contact solar cell with interdigitated *p*- & *n*-type Si pattern # R= 56.8±0.8 ΩΩ 0.0 0.1 0.2 0.3 0.4 0.5 Depth (μm) Boron doping profile ## Experimental - 1. Form boron & phosphorus doped (p^+ and n^+ -type) c-Si regions \rightarrow POCl₃ and BBr₃ diffusions in tube furnace (Tempress systems) - 2. Etch SiO₂ in diluted hydrofluoric (HF) acid 1% - 3. ALD of In_2O_3 (Oxford Instruments OpALTM) at 100 °C using InCp, H_2O and O_2 Libera, Chem.Mater.23,2150 (2011) ## Results - 1. On p^+ Si there is a conformal layer of 75 nm In_2O_3 present - 2. On planar *n*-type Si there is no growth at all of In_2O_3 (not shown) - On random-pyramid textured n-type Si, nucleation of In₂O₃ occurs on defect sites Textured p+-type Si: 75 nm In₂O₃ Area-selective ALD on *p*+-type Si regions Textured *n*⁺-type Si: nucleation of In₂O₃ (but no growth on planar *n*- or *n*+ -type Si) ## Mechanism - p+ Si remains hydrofylic after HF dip - XPS shows native oxide is removed -After HF dip→ p+ Si hydrophilic! -After ALD: 75 nm In₂O₃ on p+ Si ## **Conclusions & Outreach** Concept of area-selective deposition based on doping level c-Si demonstrated. ALD In₂O₃ 2. The hydrophilic/hydrophobic nature of doped Si surfaces could open up possibilities for ASD using self-assembled monolayers.