Area-Selective Atomic Layer Deposition of In₂O₃ based on the c-Si doping level

Bas van de Loo, Alfredo Mameli, Erwin Kessels

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands b.w.h.v.d.loo@tue.nl, w.m.m.kessels@tue.nl

Download poster and related publications;

Objective

 Can we obtain area-selective deposition based on the doping level of c-Si?

Approach;

 Atomic-layer-deposited (ALD) of In₂O₃ as model system

Example: Back-contact solar cell with interdigitated *p*- & *n*-type Si pattern

R= 56.8±0.8 ΩΩ 0.0 0.1 0.2 0.3 0.4 0.5 Depth (μm) Boron doping profile

Experimental

- 1. Form boron & phosphorus doped (p^+ and n^+ -type) c-Si regions \rightarrow POCl₃ and BBr₃ diffusions in tube furnace (Tempress systems)
- 2. Etch SiO₂ in diluted hydrofluoric (HF) acid 1%
- 3. ALD of In_2O_3 (Oxford Instruments OpALTM) at 100 °C using InCp, H_2O and O_2 Libera, Chem.Mater.23,2150 (2011)

Results

- 1. On p^+ Si there is a conformal layer of 75 nm In_2O_3 present
- 2. On planar *n*-type Si there is no growth at all of In_2O_3 (not shown)
- On random-pyramid textured n-type Si, nucleation of In₂O₃ occurs on defect sites

Textured p+-type Si: 75 nm In₂O₃

Area-selective ALD on *p*+-type Si regions

Textured *n*⁺-type Si: nucleation of In₂O₃ (but no growth on planar *n*- or *n*+ -type Si)

Mechanism

- p+ Si remains hydrofylic after HF dip
- XPS shows native oxide is removed

-After HF dip→ p+ Si hydrophilic!

-After ALD: 75 nm In₂O₃ on p+ Si

Conclusions & Outreach

 Concept of area-selective deposition based on doping level c-Si demonstrated.

ALD In₂O₃

2. The hydrophilic/hydrophobic nature of doped Si surfaces could open up possibilities for ASD using self-assembled monolayers.

