# Design and Synthesis of Catalytic Nanoparticles via Area Selective Atomic Layer Deposition

### Rong Chen



2017-04-21, Eindhoven

### **Outline**

- Catalyst challenges and model catalyst design
- Reactivity, Selectivity, and Stability
  - 1. Core-shell nanoparticles
  - 2. Nanotrap Pt/CoO<sub>x</sub> structures
  - 3. Nanofence Pt with active oxides coating structures
- Summary and outlook for selective ALD in catalysis applications

## **Noble Metal Catalysts**



#### **Huge demand for noble metals**

-- PGM market report 2016 Nov

|                                    | 2014  |       | 2015 |       |       | 2016 |       |       |      |
|------------------------------------|-------|-------|------|-------|-------|------|-------|-------|------|
|                                    | Pt    | Pd    | Rh   | Pt    | Pd    | Rh   | Pt    | Pd    | Rh   |
| automobile catalyst demand(ton)    | 97.1  | 233.2 | 24.6 | 101.6 | 238   | 23.7 | 103.3 | 243.9 | 24.2 |
| total demand(ton)                  | 186.6 | 247.9 | 21.1 | 204.2 | 211.6 | 20.6 | 199.9 | 221.9 | 21   |
| total supply(ton)                  | 160   | 189.9 | 19.1 | 190   | 200.5 | 23.5 | 186.9 | 201.8 | 23.1 |
| automobile catalyst percentange(%) | 38.7  | 70    | 80.4 | 39.4  | 82.6  | 81.4 | 40    | 80.9  | 81.2 |





# Challenges in catalysis



**Stability** 



Cold start

Sintering and coking



carbon cycling reactions

## **Design for Activity**

#### nanostructures



Nat. Mater., 2008, 7, 333

#### selective decoration



#### strong metal-oxide interactions



J. Am. Chem. Soc, 2013,135,16689



## **Design for Stability**

### physical separation to eliminate migration





Catal. Lett. 2011





J. Phys. Chem. C, 2008





J. Phys. Chem. C 2013

### metal oxide anchoring





### coking inhibition



Applied Catalysis B, 2017, 202, 683

## **Design for Selectivity**

### alloys



Energy Environ. Sci., 2012, 5, 6885

### **Facets preference**



ACS Cent. Sci., 2016, 2 (8), pp 538-544

#### **Interfacial electronic transfers**





### Precise control of catalyst structures

#### **Noble metals**





Size and composition



Core shell structure





Active oxide support



Oxide coating



Interface

## **Catalysts Design via ALD**

#### Post thermal treatment



Coking and sintering-resistant enhanced in oxidative dehydrogenation of ethane

Science, 2012,335,1205

# Selective ALD of core-shell structures



Temperature & partial pressure adjustment

Chem. Mater., 2012, 24, 2973

#### **Porous coating**



Stabilize the catalysts in methanol decomposition et al.

Chem. Mater. 2012,24,2047 Chem. Mater. 2014,26,6752

### Selective ALD of



Stabilize Pt catalyst with nanotraps in ORR

J. Phys. Chem. C, 2012,116,7748, Adv. Mater. 2015,27,277

## **Core-shell Bimetallic Catalysts**



Modification of electronic & chemical properties

## **Preferential Oxidation of CO (PROX)**





## Strategy for fabricating core shell NPs

utilizing area selective ALD to fabricate core shell NPs with regular ALD recipes



Sci. Rep. 5, 8470, 2015

# Size and composition control

The size and composition of the core shell NPs can be controlled precisely by varying the ALD cycles





### Performance towards PROX reaction

**CO-tolerant**: CO+H<sub>2</sub>+1/2 O<sub>2</sub>  $\rightarrow$  CO+H<sub>2</sub>O **PROX**: CO+H<sub>2</sub>+1/2 O<sub>2</sub>  $\rightarrow$  CO<sub>2</sub>+H<sub>2</sub>





- A monolayer of Pt shell shows significant improved catalytic performance
- Activation energy for CO oxidation of ~ 1 Pt ML NPs has lowest value, suggesting lower CO oxidation barrier



# Structure Stability in Redox Environment





- Desired nanostructure of bimetallic Pd@Pt NPs could promote the performances of PROX reaction
- Pd@Pt structure remains intact after PROX catalytic process

## Ru/Pt bimetallic catalysts for PROX

Noble bimetallic core shell nanoparticles





## d-band Center Comparison



- Interaction strength of the catalytic surface with the adsorbates (CO in this reaction) is relevant to the d-band center, negative shift of the d-band center means CO adsorption weakens
- Compared to Pd@Pt, d band center change is significant on Ru with 1 ML of Pt



## **Electron modification**



Electron transform occurs at the interface of Ru/Pt, from Ru to Pt.

# Catalytic activity measurement





#### **Activation energy calculation**

Ref: Nat. Mater., 2008, 7, 333, Ru@Pt, 1~2 layers Ea=129.4kj/mol

~5 cycle of Pt (less than a monolayer) shows significant improvement of catalytic activity

### **Metal-oxide interaction**

#### metal-oxide interface



Science, 2014, 344, 495

Angew. Chem. Int. Ed., 2010, 49, 4418

# Pt and Co<sub>3</sub>O<sub>4</sub> ALD Processes

### Home made fluidized ALD reactor for powder ALD







Co<sub>3</sub>O<sub>4</sub> ALD (150 °C)

## Selective Growth of ODT and Co<sub>3</sub>O<sub>4</sub>





## **ODT Removal**

In situ mass spectrometry monitoring signals of CO<sub>2</sub> and H<sub>2</sub>O

In situ DRIFTS detecting the stretching bands in C-H and Pt-CO regions



heating up under oxidative environment with in-situ characterizations

## DRIFTS spectra of CO adsorption (RT)



 The blocked adsorption sites on Pt nanoparticles for CO molecule have been exposed after the removal of ODT overlayer.

# TEM images of Co<sub>3</sub>O<sub>4</sub>/Pt/Al<sub>2</sub>O<sub>3</sub>

Co<sub>3</sub>O<sub>4</sub>/Pt/Al<sub>2</sub>O<sub>3</sub>: Pt are inserted into Co<sub>3</sub>O<sub>4</sub> nanotraps



## **CO** oxidation performance







- Co<sub>3</sub>O<sub>4</sub>/Pt/Al<sub>2</sub>O<sub>3</sub> exhibits outstanding low temperature CO oxidation performance, while Co<sub>3</sub>O<sub>4</sub>@Pt/Al<sub>2</sub>O<sub>3</sub> shows worse activity than pure Pt/Al<sub>2</sub>O<sub>3</sub>.
- Co<sub>3</sub>O<sub>4</sub> nanotraps can greatly enhance the thermal stability of Pt nanoparticles.

### **Reaction order**



• The larger reaction order of CO and smaller reaction order of  $O_2$  over  $Co_3O_4/Pt/Al_2O_3$  indicate the weaker CO adsorption energy and lower  $O_2$  activated barrier, which may due to the strong interfacial interaction between  $Co_3O_4$  and Pt.

## Characterizations of calcined catalysts



causes Pt crystal

have been stabilized with  $Co_3O_4$  nanotraps.

Particle size (nm)

80

70

60

### Oxide nanofence coating from facet-selective ALD





Discontinuous coating

- √ Nanofence barrier cage
- √ Pt-O-Ce strong anchoring
- **√** Synergetic effect
- √ Facet edge
- √ Stable in redox environment

# ALD process and XPS of CeO<sub>2</sub> coated Pt



## **Selective ALD method**



- Ce(thd)<sub>4</sub> precursor preferentially adsorb on Pt (111) surface via the ligand exchange mechanism.
- After CeO<sub>2</sub> has formed on Pt (111), epitaxial growth of CeO<sub>2</sub> (111) emerged, Ce(thd)<sub>4</sub> does not like to adsorb on Pt (200).

## **HRTEM Images: Facet Selectivity**



**Increasing ALD cycles** 

CeO<sub>2</sub> are preferred and selected deposited on Pt (111) direction which forming abundant interface.

32

# Catalysts performance test



- $T_{50}$ , up decrease as  $CeO_x$  coating cycles increase within 100 cycles, after optimization coating cycles, the catalytic activity start to decrease
- The activation energy Ea for CO+O→CO<sub>2</sub> implies the ability of the surface to remove CO during CO oxidation. Ea around 100 cycles has lowest value.

# Catalysts performance test



- Bond length of Pt-Pt in  $CeO_x$  coated sample has shifted from 2.73Å to 2.70Å strong metal oxide interaction effect (SMOI)
- Both  $CO/O_2$  reaction order for  $Pt/CeO_x$  is close to 0, indicating the weaker CO adsorption energy and lower  $O_2$  activated barrier

# Thermal stability of CeO<sub>2</sub>/Pt

With CeO<sub>2</sub> coating layer, the CeO<sub>2</sub>/Pt catalysts demonstrate improved thermal stability



# Thermal stability of Pt@CeO2 catalysts

With CeO<sub>2</sub> coating layer, the CeO<sub>2</sub>/Pt catalysts demonstrate improved thermal

stability





|       | Pure Pt | 50 cyc<br>CeOx | 100 cyc<br>CeOx | 200 cyc<br>CeOx |
|-------|---------|----------------|-----------------|-----------------|
| fresh | 232℃    | 195℃           | 188C            | 206€            |
| 600€  | 245C    | 201℃           | 190C            | 207€            |
| 700℃  | 276℃    | 206℃           | 192℃            | 213C            |
| 750℃  | 279℃    | 223C           | 219C            | 211C            |



### **Summary: Selective ALD methods**

#### 1. Surface modification with self-assembled monolayers



**Pd/Pt Core shell nanoparticles** 



Pt/CoOx Oxide nanotraps

# **Summary: Selective ALD method**

2. Precursor activation energy difference



3. Facet selective ALD-binding energy/lattice constant difference



## **Summary and Outlook**

- Selective ALD is a quite powerful synthesis method to create model catalysis.
- Energy difference between different surfaces to obtain selectivity can be quite subtle.
- Defects can be utilized.

### **Challenges and Outlooks:**

- Tiny structures with enormous surface areas, requires new processes and equipment.
- Bulky ALD precursors with low reactivity for many transition metal oxides, needs better chemicals.
- Surface is not well defined with edges and facets, ideal film theory may not work here.
- Selective deactivation of defects and *in-situ* spectroscopic characterizations required to understand growth mechanism.