mec ## INSIGHT IN NUCLEATION MECHANISMS OF SEMICONDUCTING 2D METAL SULFIDES — APPLICATION TO AREA SELECTIVE DEPOSITION ANNELIES DELABIE, Y. TOMCZAK, M. HEYNE, B. GROVEN, T. VAN PELT, H. ZHANG, S. DE GENDT, S. VAN ELSHOCHT, M. CAYMAX, W. VANDERVORST, E. ALTAMIRANO SANCHEZ, I. RADU #### BOTTOM UP APPROACHES FOR PATTERNING - Scaling brings significant challenges in patterning: Resolution, accurate pattern placement - Bottom-up approaches combined with conventional top-down patterning - Self-aligned multiple patterning - Directed self-assembly - Area Selective Deposition (ASD) #### ASD – STATE OF THE ART Semiconductor on semiconductor e.g. Loo et al, ECS J. Solid State Science and Technology, 6, P14 (2017) Metal on Metal (MoM): Few demonstrations - Capping layers (Co, Mn ...) on Cu (electro-migration) - Selective bottom up fill with ELD (Co) Simon et al, IEEE IRPS, 2013 Dielectric on Dielectric (DoD) Few studies on (sub)micron scale, limited materials, limited characterization of selectivity Minaye Hashemi et al, ACS Nano, 9, 8710 (2015) Metal on Dielectric selective to Metal (MoD) Dielectric on Metal selective to Dielectric (DoM) ? ## AREA SELECTIVE DEPOSITION - GOALS - Expand material systems accessible by ASD - Semiconductor, metal, metal oxide, 2D material - Surface dependence of ALD, CVD, ELD - 2. Achieve sufficient selectivity for applications in patterning, at sub-30nm dimensions - Surface composition changes after patterning - Impact of processes growth/no-growth surface area - Characterization of selectivity unec Growth surface area Deposition affected: pinholes, blocking ... #### Efrain Altamirano Sanchez #### ASD FOR FUTURE TECHNOLOGIES #### KNOWLEDGE NEEDS TO BE BUILT UP AT RELEVANT DIMENSIONS Optimize the ASD processes on pattern. Determine metrology challenges (defects, inspection roughness...) Growth curves (ASD) 2016-2017 ASD on pattern structures 2017-2020 ASD on devices 2020-2024 In depth learning of current ASD systems (Mechanistic, defects formation...) Explore new materials for ASD. ## AREA SELECTIVE DEPOSITION (ASD) FOR FUTURE TECHNOLOGIES See also Ivan Zyulkov, Job Soethoudt, Benjamin Groven - Tone reversal patterning solutions - DoM/MoM/MoD for Block Mask BEOL, DoD - Bottom up fill for future interconnect - Partial via fill, BEOL: MoM: Ru on Co/Ru, not on low-k - Trench fill, BEOL MoD: Ru on SiCN not on aC. Ru catalyst for Co ELD - Bottom up fill for EUV mask absorber: Co, Ni, CoNi fill by ELD on Co/Ru not on SiO₂ - Self aligned via (DoD, BEOL) - Processes for new 3D device architectures (e.g. 3D VFET or VSRAM) - Deposition of 2D semiconductors #### 2D MATERIALS BEYOND GRAPHENE Diversity of 2D structures, compositions, properties available for exploration ## **Atomically thin 2D semiconductors** - Fully passivated semiconductor interface - Reduced short channel effects - Choice of bandgaps and band alignment → hetero-stacks for TFET Graphene & analogues e.g. h-BN Transition Metal Dichalcogenides (MX₂) e.g. MoS₂, WS₂, WSe₂ Black Phosphorous & analogues e.g. SnS, SnSe P. Miro et al, An atlas of two-dimensional materials, Chem. Soc. Rev., 43, 6537 (2014) C. Gong et al., Appl. Phys. Lett. 107, 139904 (2015) #### **EXPLORATION OF 2D MATERIALS IN NANO-ELECTRONIC DEVICES** #### MOSFET with Inm gate length Desai et al., Science, 354, 2016 #### TFET T. Roy et al., ACS Nano, 9, 2071, 2015 MoS₂ U-shape MOSFET #### Monolithic 3D integration (BEOL) A. B. Sachid et al, Adv. Mater. **2016**, 28, 2547–2554 #### **FABRICATION PROCESSES FOR 2D MATERIALS** Exfoliation from natural crystals and transfer - Exploration of 2D materials, proof of concept - Limited area micrometers MX₂ deposition techniques Atomically Controlled Deposition - Industrial applications - Large area substrates #### FABRICATION PROCESSES FOR 2D MATERIALS ## **CHALLENGES** - Semiconducting properties high quality structure, crystallinity - Monocrystalline, exclude impact of grain boundaries - Low vacancy, defect, impurity content - Monolayer growth control on large area substrates - From few down to single monolayers - Van der Waals hetero-structures - Conformality - Temperature budget ~ integration flows ## **OPTIONS** - MX₂ deposition techniques - Sulfurization of metals or oxides - Chemical Vapor Deposition (CVD) - Atomic Layer Deposition (ALD) - Molecular Beam Epitaxy (MBE) - Different integration schemes - Transfer - Template - Top down → Bottom up ## MX₂ BY CHEMICAL VAPOR DEPOSITION (CVD) Monolayer thin crystals with lateral size up to millimeter on SiO_2 substrates State of the art optical and electrical properties, comparable to exfoliation Moderate deposition temperatures (450 – 700°C) #### Challenges: - Polycrystalline in absence of template for epitaxial seeding - Monolayer growth control, uniformity on large area substrates Y. Gong et al, Adv. Funct. Mater. **2016**, 26, 2009 #### ~ mm | MoS ₂ by MoO ₃ /S CVD 700°C on Si/SiO ₂ | 100 μm | |--|--------| | THE A PERSON | . 7.5 | | A A S S A S S A S A S A S A S A S A S A | 175 | | A A A A A A A A A A A A A A A A A A A | | | THE THE PARTY OF T | | | _ | | | | <u> </u> | | |---|---|--|--|--|---| | | Monolayers | Band
gap
(eV) | Max
polycrystalline
film size | Max single
crystal size | Max mobility on SiO_2/Si (cm ² V ⁻¹ s ⁻¹) | | | Graphene
hBN
MoS ₂
WS ₂
MoSe ₂
WSe ₂ | 0 ~ 6.0 ~ 1.8 ~ 2.1 ~ 1.5 ~ 1.7 | 40 inches ⁸⁰ 7 cm × 7 cm ⁸⁸ 1 cm × 3 cm ⁹² 1 cm × 1 cm ⁹⁵ 1.5 cm × 2 cm ⁹⁸ ~1 inch ¹⁰⁰ | 5.08 cm ⁶¹
~10 μm ^{90,91}
~123 μm ⁹³
~180 μm ⁹⁶
~135 μm ⁹⁹
~50 μm ¹⁰⁰ | $ \begin{array}{c} 16000^{77} \\$ | Van der Zande et al, Nature Materials, 12, 554, 2013 H. Wang et al, Nanoscale, 2014, 6, 12250 ## GRAIN BOUNDARIES IN POLY-MX2 DEGRADE CARRIER MOBILITY CVD deposited 2D TMDs are polycrystalline in absence of template for epitaxial seeding Grain boundaries degrade the carrier mobility of MoS₂ - Intra-domain mobility: 44 cm 2 V⁻¹s⁻¹ (17-115 cm 2 V⁻¹s⁻¹, as for exfoliated MoS₂) - Inter-domain mobility: max 16 cm²V⁻¹s⁻¹, 2 orders of magnitude dependence on misorientation angle How can we avoid impact of grain boundaries between randomly oriented crystals? Atomic defect structures (TEM) of measured devices and first-principles calculations Ly et al, Nature Communications, 7, 10426 (2016) ## MX₂ GROWTH – INTEGRATION SCHEMES | Integ | ration scheme | Conditions | Structural implications | Technique | |----------------|--------------------|--|--|-----------------------------------| | 2D m | Transfer Transfer | Template High T Planar 2D material substrate | Monocrystalline films, high structural quality Impact transfer: contamination, structural damage, alignment of hetero-stacks | Epitaxy by
high-T CVD
(MBE) | | Top dov
2. | | No template
Moderate T
Planar, 3D
substrate | Polycrystalline films Maximize grain size to minimize impact of randomly located grains and grain boundaries | CVD (ALD) | | Bottom 3. See | growth | No template
Moderate T
Planar, 3D
substrate | Grain boundaries outside device area by controlled seeding Crystal size ~ device dimensions, self-aligned processing | CVD (ALD) | #### OPPORTUNITIES FOR SELECTIVE DEPOSITION OF 2D MATERIALS - Anisotropy in bonding and reactivity in 2D materials \rightarrow unique opportunity for selective anisotropic growth - Crystal edges are more reactive than the fully passivated basal plane - Versatile chemistry of halide precursors in CVD, ALD - High purity films - Area selective deposition WF₆ for WS₂ ALD, CVD SnCl₄ for SnS₂ and SnS CVD Anisotropy in bonding and reactivity Understanding of the growth and nucleation mechanisms of 2D materials Design of bottom-up synthesis approaches for 2D materials #### **OUTLINE** - Area selective deposition of WS₂ New concept for selective deposition by conversion of sacrificial patterns - Understanding of nucleation mechanisms of CVD and ALD processes → Opportunities for selective anisotropic growth ## ALD AND CVD OF 2D WS₂ Thin WS_2 layers with 2D structure can be obtained at low deposition temperature, without using a template for epitaxial seeding Low temperature deposition enabled by reducing agents PEALD (300-450°C) 20 nm H_2 plasma A. Delabie et al., Chem. Commun., 51, 15692 (2015) B. Groven et al, Chemistry of Materials, 10.1021/acs.chemmater.6b05214 (2017) $WF_6 + H_2S$ Pulsed CVD (450°C) WS_2 Sacrificial Si layer Al₂O 20 nm A. Delabie et al., Chem. Commun., 51, 15692 (2015) uniec M. H. Heyne et al, Nanotechnology, 28, 04LT01 (2017) ## CVD WS₂ GROWTH MECHANISM → SELECTIVE DEPOSITION WS₂ CVD at 400-450°C is enabled by Si sacrificial layer (reducing agent) $$2WF_{6(g)} + 3Si_{(s)} \rightarrow 2W_{(s)} + 3SiF_{4(g)}$$ $W_{(s)} + 2H_2S_{(g)} \rightarrow WS_{2(s)} + 2H_{2(g)}$ No WS₂ deposition by sequential WF₆/H₂S reactions on several dielectric layers - → WS₂ thickness control by thickness of Si layer on dielectric - -> Area selective deposition on dielectric for sacrificial Si pattern with under layer #### CONCEPTS OF AREA SELECTIVE DEPOSITION #### Area selective deposition ## WS₂ PULSED CVD (450°C) WITH SI SACRIFICIAL LAYER (MBD, PVD) Crystalline 2D WS₂ formed by sequential reactions of WF₆ and H₂S and a sacrificial Si layer (RAMAN, XPS, XRD) WS₂ thickness control by thickness Si layer (RBS) 2D structure of WS₂, nano-crystalline (grain size ~5nm), random orientation Rapid thermal annealing (Ar, 900°C) improves horizontal layer alignment ## PROOF OF CONCEPT: AREA SELECTIVE DEPOSITION OF 2D WS₂ #### BY SELECTIVE CONVERSION OF SACRIFICIAL SI LINES M. H. Heyne et al, Nanotechnology 28 (2017) 04LT01 ## PROOF OF CONCEPT: AREA SELECTIVE DEPOSITION OF 2D WS₂ #### BY SELECTIVE CONVERSION OF SACRIFICIAL SI STRUCTURES - Conversion of Si to WS₂ on Al₂O₃ is highly selective, as indicated by Helium Ion Microscopy (HIM, sub-nanometer resolution) - No WS₂ grains on the Al₂O₃ field - Si patterning is well established clean Al₂O₃ top surface - Small grain size of WS₂ in 300nm x 300nm pattern (~10nm) on polycrystalline Al₂O₃ - Decrease of lateral dimensions might enable deposition of monocrystalline WS₂ seeds for controlled seeding #### **OUTLINE** - Area selective deposition of WS₂ New concept for selective deposition by conversion of sacrificial patterns - Understanding of nucleation mechanisms of CVD and ALD processes → Opportunities for selective anisotropic growth ## ALD AND CVD OF 2D WS₂ umec Thin WS₂ layers with 2D structure can be obtained at low deposition temperature, without using a template for epitaxial seeding Low temperature deposition enabled by reducing agents A. Delabie et al., Chem. Commun., 51, 15692 (2015) M. H. Heyne et al, Nanotechnology, 28, 04LT01 (2017) ## WS₂ PEALD – 2D STRUCTURE - Strongly textured, polycrystalline WS₂ layers are obtained at low T (300–450°C) without using a template or anneal - Crystallinity (grain size, in-plane alignment) depends on nucleation mechanisms B. Groven et al, Chemistry of Materials, 10.1021/acs.chemmater.6b05214 (2017) ## PEALD WS₂: 2D STRUCTURE ⇔ NUCLEATION MECHANISMS #### Nucleation and grain size depend on - Reactivity of substrate (SiO_2, Al_2O_3) - Deposition temperature uniec ## PEALD WS, NUCLEATION BEHAVIOR – CRYSTALLINITY - High nucleation density on Al₂O₃ (E+14/cm²) \rightarrow nano-crystalline WS₂ (5-30nm grain size) - Random in-plane orientation of layers (Moiré patterns): precursor adsorption on grain boundaries and WS_2 basal planes - Preferential adsorption on Al_2O_3 does ensure rapid layer closure of WS_2 layer (< 2 ML, plane view TEM, TOFSIMS) ## PEALD WS₂: NUCLEATION BEHAVIOR ⇔ 2D STRUCTURE WS₂ domain size increases to ~100nm by decreasing the nucleation density: less reactive substrate (SiO₂) and higher T (450°C) 2D crystals with controlled in-plane alignment (on first WS₂ layer of crystal) \rightarrow >10⁴ orders of magnitude increased PL intensity Both vertical and horizontal growth contributions #### CVD OF 2D SnS CRYSTALS - Low nucleation density (E5 crystals/cm² << E10 crystals/cm² for PEALD) - Lateral dimensions of SnS crystals: micrometer scale - Fixed height of SnS crystals (6-8nm) for different lateral sizes (AFM) - Nucleation mechanisms for SnS (and SnS₂) CVD on SiO₂: island formation and selective horizontal growth ## NUCLEATION MECHANISM OF SnS₂ CVD SnS₂ surface coverage and grain size increases with constant height of SnS₂ crystals (4 nm) → Selective horizontal growth, higher reactivity of crystal edges versus basal planes ## NUCLEATION MECHANISM OF SnS₂ AND SnS CVD - Initial nucleation regime on SiO₂ substrate before layer closure: island growth, formation of 2D crystals and selective lateral growth - Height of 2D crystals is determined by initial nucleation mechanisms (SnS_x islands, composition and phase) Adsorption of SnCl₄/H₂S on SiO₂ surface Formation of initial SnS_x nuclei 3D growth Critical dimension: 2D structure, horizontal basal planes Directional growth, 2D growth, selective horizontal growth due to higher reactivity of crystal edges and SiO₂ surface versus basal planes Until layer closure ## CONCLUSIONS, OUTLOOK Versatile chemistry and anisotropic bonding of 2D materials provides unique opportunities for selective deposition, beyond the conventional concept of area selective deposition Area selective deposition by pattern conversion (Si → WS₂) Selective anisotropic growth → Exploit seeding of 2D crystals at well-defined locations on large area substrates ## mec embracing a better life