Perfectly Selective Thin Film CVD Using Inhibitor Molecules IVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN ### Intrinsic selectivity: Fails by stray nucleation ### Nucleation: The important role of *defects* #### John Venables: "...there may be defects on the surface which act as preferred nucleation sites...such effects were shown to have played a role in early experiments." A colleague at an AVS meeting: "I love the problem of nucleation on oxides." ### Why? "I study surface defects – and the only way I can find them is to flow a CVD precursor over the surface and form nuclei." ## Classic concept of CVD: precursor rapidly loses ligands This is correct at higher T, which is required if the precursor is too stable ## Low-Temperature CVD: Surface mostly covered with adsorbed precursor / product / added inhibitor ## Adsorbate residence time τ vs. $E_{desorption}$ ## Steady-state with flux from gas phase: Surface coverage θ = fraction of 1 ML $$\vartheta = \frac{k_{ads}}{k_{ads} + k_{des}}$$ where $$k_{ads} = s \frac{P}{\sqrt{2\pi mkT_{gas}}}$$ $$k_{des} = R_{des}N_{surf}$$ assume $$s = 1 \text{ (sticking coefficient on bare site)}$$ $$v = 10^{12}[s^{-1}] \text{ (attempt frequency)}$$ $$N_{surf} = 10^{19}[m^{-2}] \text{ (surface site density)}$$ ### Adsorbate pressure for steady-state $\theta = 0.95$ ### Example desorption energies NH_3 on HfB_2 1.30 eV PMe₃ on Cu(100) 1.21 eV VTMS on Cu 0.61 - 0.75 eV COD on Cu(100) 0.61 eV NH₃ on hydroxilated SiO₂ 0.41 eV Butyne on Cu(100) 0.36 eV ## How does the adsorbed layer affect CVD growth? ... if reaction probability were constant ... Arora & Pollard (refs therein), JECS (1991) Yang & Abelson, Chem Mat (2006) ## HfB_2 from $Hf(BH_4)_4$ at $T_{sub} = 275$ °C 0.1 mTorr 80 mTorr ## Saturated growth rate at high P_{pre}: Conformality! ## Problem: Many precursors have low vapor P and never achieve rate saturation Solution: Add a growth inhibitor to - increase the site blocking effect, and / or - stimulate associative desorption of the precursor Example: Growth of TiB_2 from $Ti(BH_4)_3$ (dme) - dme normally desorbs intact from surface - LeChatelier approach: Add an overpressure of dme ## Added dme slows (inhibits) TiB₂ growth Kumar & Abelson, JACS (2008) ## Inhibition by dme affords conformal TiB₂ ## Added CO inhibits Fe growth from Fe(CO)₅ Precursor alone + 2 mTorr CO A "non-conformal" precursor is made conformal ## Mechanistic interpretation: Site blocking or associative desorption? #### Example: $$AB = precursor = Ti(BH4)3(dme)$$ $$B = inhibitor = dme$$ Site-blocking term $$GR = k_r \theta_A = \frac{k_r k_{ads} p_{AB} (1 - \theta_B)}{k_r + k_{des} \theta_B + k_{ads} p_{AB}}$$ Associative desorption term One cannot distinguish the microscopic mechanism based on a measurement of growth rate! ### Inhibitor: Stable vs. consumable? ### Stable either high or low sticking coefficient Inhibition is same on all surfaces #### Consumable high sticking coefficient Inhibition on exposed (upper) surfaces only # Consumable inhibitor: Add $Pd(hfac)_2$ or H(hfac) to HfB_2 growth from $Hf(BH_4)_4$ # Consumable inhibitor: H or N atoms from remote plasma (*no precursor back-streaming*) ## CrB_2 from $Cr(B_3H_8)_2$ #### Thermal CVD: pinch off $$T = 300^{\circ}C$$ $$P_{precursor} = 4 \times 10^{-5} \text{ Torr}$$ #### Add H Atoms: superconformal $$F_H = 3 \times 10^{14} / \text{cm}^2\text{-s}$$ Stoichiometry unchanged ## HfB_2 from $Hf(BH_4)_4$ #### Thermal CVD #### Add N Atoms But N incorporation: $Hf B_x N_y$ ## Enhance nucleation density: Differential inhibition #### Steady-state growth #### **Nucleation** Substrate: ~ No inhibitor coverage ## NH_3 as inhibitor slows HfB_2 growth from $Hf(BH_4)_4$ but NH_3 adsorbs weakly on SiO_2 # HfB₂ Nucleation on SiO₂ from Hf(BH₄)₄ Add NH₃ inhibitor #### Dense nucleation affords ultra-smooth films Dense nucleation affords a smooth film, even with fast growth ## The problem of selective deposition: eliminate stray nucleation with inhibitors Cu(hfac)VTMS precursor, T_{sub.}= 100°C, t_{growth}= 30 min Grow Cu on RuO_x seed layer #### Unwanted Cu islands on SiO₂ ## Suppress Cu nucleation on SiO₂: VTMS inhibitor reverses adsorption step #### Dissociative adsorption $$Cu(hfac)VTMS_{ads} \Leftrightarrow Cu(hfac)_{ads} + VTMS_g$$ ### Disproportionation $$2Cu(hfac)_{ads} \longrightarrow Cu + Cu(hfac)_{2g.}$$ ## Associative desorption; add VTMS as inhibitor #### What controls the rate? ### Disproportionation $$Cu^{+1}(hfac)_{ads} + Cu^{+1}(hfac)_{ads} \longrightarrow Cu^{0} + Cu^{+2}(hfac)_{2g}$$ ### Associative desorption **Fast on metals** #### **Dominant mechanism:** Disproportionation (Film grows at ~ half the rate) Slow on dielectrics Associative desorption (Kills nucleation) ## Proof of Concept: VTMS as inhibitor affords selective growth of Cu Precursor alone Stray nucleation Add VTMS Zero stray nuclei! # Inhibition works on demanding substrates: Carbon-doped SiO₂ (*Intel 28% C*) ## Emerging inhibition work: *No nucleation on oxides* while metal grows on seed areas ## How can inhibitor suppress nucleation? Site block almost all surface sites $(\theta \sim 1)$ Passivate surface defects (θ could be small) Reverse precursor adsorption (helps if growth step is slow) Block lateral interaction or transport Mechanistic understanding hard to obtain! Tools include isotopes + desorption mass spec, FTIR, ... #### Conclusions: Low-T CVD Steady-state adsorbate populations (*Langmuirian*) Adsorbed layer can moderate growth or halt nucleation Choose inhibitor for desirable E_{des} and stability (*or lack*) Control parameters: partial P, substrate T Can also obtain conformal and superconformal growth We know little about sites, sterics, and lateral interactions Why does 1st order Langmuir model work? Because overall rates are limited by slowest kinetic step. ### Acknowledgements #### **Group Members** Y. Yang, N. Kumar, A. Yanguas-Gil, S. Babar, P. Zhang #### **National Science Foundation** DMR 1005715, CHE 1362931, DMR 1410209 ## Intel, Lam, Applied Materials, Novellus, Seagate for patterned substrates ### **Center for Microanalysis of Materials** Materials Research Laboratory, U. Illinois #### **ASD17** The organizers and sponsors! ### Precursors invented by Greg Girolami | Mg(deadb)2 | Mg(II) | |---------------------|---------| | Mg(dmadb)2 | Mg(II) | | Ca(dmadb)2(dme) | Ca(II) | | Sr(dmadb)2(diglyme) | Sr(II) | | Ti(dmadb)2 | Ti(II) | | Cr(dmadb)2 | Cr(II) | | Mn(dmadb)2 | Mn(II) | | Mo(dmadb)2 | Mo(II) | | La(dmadb)3 | La(III) | | Ce(dmadb)3 | Ce(III) | | Pr(dmadb)3 | Pr(III) | | Nd(dmadb)3 | Nd(III) | | Sm(dmadb)3 | Sm(III) | | Eu(dmadb)3 | Eu(III) | | Gd(dmadb)3 | Gd(III) | | Tb(dmadb)3 | Tb(III) | | Dy(dmadb)3 | Dy(III) | | Ho(dmadb)3 | Ho(III) | | Er(dmadb)3 | Er(III) | | | | | Tm(dmadb)3 Yb(dmadb)3 Lu(dmadb)3 Mn(NtBu2)2 Fe(NtBu2)2 Co(NtBu2)2 Ni(NtBu2)2 Cr(NtBu2)3 Mg(emadb)2 Mg(emadb)2 Mg(meadb)2 Mg(meadb)2 Mg(mmadb)2 Mg(B3H8)2 Mg(B3H8)2(OFt2)2 | Tm(III) Yb(III) Lu(III) Mn(II) Fe(II) Co(II) Ni(II) Cr(III) Mg(II) Mg(II) Mg(II) Mg(II) Mg(II) | |---|--| | , | 3 \ | ### Added VTMS inhibits Cu growth from Cu(hfac)VTMS Babar, ECS SST (2014); Kumar, PhD thesis, U. Illinois (2009) ## Chemical Vapor Deposition (CVD): The challenge of conformality #### **Fundamental problem:** Essentially all CVD deposition processes suffer from pinch-off due to faster growth near aperture Cause: Precursor pressure (and thus growth rate) falls with depth: a diffusion-reaction problem #### Possible strategies: - 1. Minimize consumption of precursor - 2. Change dependence on pressure #### **Definitions:** SC (step coverage) = thickness at bottom sidewall / top sidewall AR (aspect ratio) = trench depth / width ## Co CVD (*new results*): Morphology very sensitive to nucleation! Ru substrate $0.05 \text{ mTorr } \text{Co}_2(\text{CO})_8$, 100°C , 10 min, $\sim 60 \text{ nm}$ **Ta substrate** 0.05 mTorr Co₂(CO)₈, 100°C, 10 min Ta substrate $0.05 \text{ mTorr } \text{Co}_2(\text{CO})_8$, 150°C , 10 min Sticking s ~ 5 % onset of conformal regime #### Literature: Conformal CVD of Co at low T, high P Consistent with prediction of zone diagram: *need high P* Co deposited in trenches with AR 13:1 using 200 mTorr Co₂(CO)₈ (a) 50 °C, (b) 60 °C J. Lee et. al. JECS 153 (6), G539-G542 (2006) ### CVD growth systems in Abelson laboratories Test chamber: simple in design and convenient for oxide growth Analytical chamber: equipped with multiple surface techniques ## Some CVD systems we have investigated * precursor invented by GSG ``` Hf(BH_4)_4 for HfB_2 Ti(BH_4)_3(dme)^* for TiB_2 Cr(B_3H_8)_2* for CrB_2 Cu(hfac)(VTMS) for Cu Ru(C_6H_8)(CO)_3^* for Ru Mg(DMADB)_2* + H_2O for MgO Fe(CO)₅ for Fe Co₂(CO)₈ for Co Mn(TMP)_2^* + NH_3 for MnN_y Studies in process: VN, HfO₂, ... ``` # New Vanadium Nitride Process CVD at 150°C ### Solution # 1: Minimize reaction probability β ### Analytic model of conformal coverage in CVD #### Fundamental problem: Pressure drop ΔP from top to bottom of trench #### Approximation: Assume GR = constant; largest possible ΔP Solve Fick's second law analytically $$(\Delta p)_{trench} = GR(T) \frac{\rho k_B T}{D_0} (AR) \left(1 + \frac{c}{2} (AR) \right) \approx GR(T) \frac{c \rho k_B T}{2D_0} (AR)^2$$ where c = 2.4 for via or trench. Step coverage SC is then a function of AR and $\frac{\partial GR}{\partial P}$ $$SC = 1 - \frac{\partial GR}{\partial p} \frac{c\rho k_B T}{2D_0} (AR)^2$$ ## Analytic model for conformal CVD connects GR, AR and SC $$p_{precursor} = \frac{GR \times AR}{\sqrt{1 - SC}} \sqrt{\frac{c\rho k_B T}{2D_0 K_1(T)}}$$ In CVD, SC is always < 1 (but ~ 0.95 works fine) High precursor p is essential! ### CVD Conformal Zone Diagram: Maintain rate saturation at trench bottom A. Yanguas-Gil, JVST-A (2009) ### Use max precursor P and min T for CVD infilling HfB₂ Colloidal crystal Silica aerogel Trench Fill Fe from Fe(CO)₅ Cloud & Abelson, submitted (2016) ### Langmuirian adsorption with film growth ## We discovered a *superconformal* growth process in two-reactant CVD $Mg(DMADB)_2 + H_2O \rightarrow$ MgO + volatile byproducts We investigated an unusual process regime, $P_{\rm H_2O}$ < $P_{\rm Mg}$, because we had found that water inhibits growth Left image: under these conditions, SC > 1. Film is thicker at bottom! Right image: continued deposition leads to complete fill! Abelson, Girolami, et al., JVST-A (2014) ### Key feature #1: Co-reactants compete for adsorption sites There is a competition of the co-reactants for adsorption sites Reaction rate is the product of the surface coverages Thus, water is both necessary for growth and an inhibitor of growth Key feature #2: If molecules A and B have different molecular weights, they have different pressure drops Example: MgO growth from $Mg(DMADB)_2 + H_2O$ $$\frac{\Delta P_A(z)}{\Delta P_B(z)} = \frac{\rho_A/D_A^k}{\rho_B/D_B^k}$$ Diffusivity, - $\rho_{\rm A}$ and $\rho_{\rm B}$ are the stoichiometric coefficients in the growth reaction ($\rho_{\rm A} = \rho_{\rm B} = 1$ for this MgO process) - High mass Mg precursor has small D and thus suffers larger pressure drop down the trench - The fractional surface coverage of water in the adsorbed growth layer increases with depth in the feature # Combining #1 and #2: Superconformal if $P_{\rm H_2O}$ < $P_{\rm Mg(DMADB)_2}$ in gas feed If $P_{\rm H_2O}$ < $P_{\rm Mg}$ in the feed, the surface is water starved ($\theta_{\rm H_2O}$ << 0.5) at the aperture, and the growth rate is below the maximum Slower Mg precursor diffusion down feature lessens water starvation at greater depths and leads to faster (i.e., superconformal) growth # We can fit the growth rate vs. depth data quantitatively to this model $$\theta_{A,B} = \frac{k_{ads}^{A,B} P_{A,B} (1 - \theta_{B,A})}{k_{ads}^{A,B} P_{A,B} + k_{des}^{A,B} + k_r \theta_{B,A}}$$ Competitive Langmurian isotherm with film growth term k_r $$R = k_r \theta_A \theta_B$$ $$\frac{\Delta P_A(z)}{\Delta P_B(z)} = \frac{\rho_A/D_A^k}{\rho_B/D_B^k}$$ This model allows us to predict GR vs depth profiles for any feed conditions (i.e., P_A/P_B and MW ratios) # We can predict growth rate vs. depth profiles from a *trajectory* of P_A vs. P_B down a feature - Case (1) $P_A \ll P_B$ affords a conformal coating to large depths - Case (3) $P_A \approx P_B$ affords subconformal coating because the pressures move away from the $\theta_A = \theta_B$ line toward lower GRs - Case (2) P_A < P_B affords superconformal coating from the starting point to the depth at which the pressures cross the θ_A = θ_B line ### However, filling a V-shape is not easy: diffusivity diminishes as (1 / trench width)! W. Wang, JAP <u>116</u>,194508 (2014) # Qualitatively: Nucleation Density Relates to Surface Morphology Sparse nucleation layer (without inhibitor) Thickness = 0.3 nm RMS roughness = 2.9 nm Non-conformal film growth (without inhibitor) on top Thickness = 27.5 nm RMS roughness = 4.3 nm ## The Smoothest Case: Dense Nucleation, Conformal Growth Dense nucleation layer (with inhibitor) Thickness = 0.3 nm RMS roughness = 0.3 nm Conformal growth (with inhibitor) on top Thickness = 35.7 nm RMS roughness = 1.7 nm ## Can We Infer the Mechanisms Leading to Surface Roughness? - Measure topography by Atomic Force Microscopy (AFM) - Compute PSD, the Fourier transform of surface heights h in reciprocal space k: $$P(k) = \left\langle \left| \text{FT}[h(\mathbf{x})]^2 \right\rangle_k \qquad \int P(k) dk = w^2$$ Use of inhibitor affords independent control of nucleation density and growth conformality # Mixed: Dense Nucleation, *Non-Conformal* Growth vs. Sparse Nucleation, Conformal Growth ### Vary Nucleation and Growth *Together* via Inhibitor Partial Pressure # Extremes: Dense Nucleation, Conformal Growth vs. Sparse Nucleation, Non-Conformal Growth ### Note: Conformality improves for shallow ARs ### Correspondence Are the kinetic and Langmuirian models consistent? $$GR = \frac{K_1(T) p}{1 + K_2(T) p}$$ $$GR = k_{rxn} \ \theta_{ads} = k_{rxn} \left[\frac{k_{ads}p}{k_{ads}p + k_{des} + k_{rxn}} \right]$$ #### Resolution: - assume k_{rxn} to be small - ÷ by *k_{des}* - $K_1 p = k_{rxn} k_{ads} / k_{des}$ ### Reality Check Surely someone must have explored inhibition effects before! YES, but three complications have prevented the general use of inhibition as a means to enhance conformality: • The inhibition of hot wall reactions increases the overall transport of reactive intermediates to the substrate. Example: TiN growth from TDMAT with DME inhibitor - Weiller, Chem. Mat. (1995), JECS (1996) - Re-adsorption of a reaction product (byproduct inhibition) occurs readily and depends on gas phase transport. Example: TiN growth from TDEAT – Cale et al., TSF (1993) or from TDMAT – Okada & George, Appl. Surf. Sci. (1999) • The inhibition of homogeneous reactions <u>and</u> of surface reactions leads to a complex dependence on geometry. Example: SiO₂ growth from TEOS with ethanol inhibitor – *Schlote et al.*, *JECS (1999)* #### Reality Check So what is different in the present work using inhibitors? - Cold wall, low pressure reactor no wall or homogeneous reactions. - Byproduct inhibition is a weak effect growth rate is *dominated by the* partial pressure of added inhibitor, which is uniform in the system. THUS, the experimental behavior can be predicted by a simple model based on *surface reaction-rate control and precursor transport* in a trench. ### Analyze coverage kinetics using a *Macro-trench* ### Growth kinetics: Solve the continuity equation #### Mass balance $$\frac{dJ}{dy} = \frac{2R_{growth}}{d}$$ #### Precursor diffusion $$J(y) = \frac{D}{kT} \frac{dP}{dy}$$ #### Molecular flow $$D = 9708 \ d \left(\frac{T}{M}\right)^{1/2}$$ #### Film thickness → Growth flux → Pressure distribution ### Growth rate decreases with precursor pressure as expected due to adsorption saturation