

Selective Deposition: A Materials Supplier's Perspective

Outline

- Diversity of ASD
- A Materials Supplier Perspective:

The balancing act of Innovation vs Manufacturability

- Illustrative examples of contributions
- Highlights

Diversity of ASD

Design small. **Think big**

30

35

Process

Optimization

Selective CVD/ALD

- Selective Epi
- Selective W / Mo (~ 1980) on Si, TiN, Al
- Salicide / selective surface reactions
- « Induction time » in metal CVD
- SAM-based methods

Topography based methods

- Super conformal catalysed or inhibited CVD
- Flowable
- Dep / Etch / Dep / Etch (« sequential HDP CVD ») o

300

250

200

150

100

50

Signal

A Materials Supplier Perspective: Contribution

→ Pathfinding / tool kit building

- Precursor design / tuning & rework
 - H₂O-based process
 - high GPC
 - Higher thermal stability precursors (metal CVD)
 - Low T precursors (SAM-based ALD)
 - Etch / Dep controllable precursors.
- SAM Design & Combinatorial screening

Manufacturability Constraints (not ASD specific)

Safety

- High pace of molecule introduction + extreme property materials
 - → 2 major accident / years on average in the last 7 years at precursor suppliers

Regulatory

- TSCA, REACH, K-REACH, TW-REACH, RoHS, IMDG...
- No self decomposition at 65°C for ~ 1 week with no P buildup / self heating
- Customer specific « banned substance lists »
- Cost of implementation / entry barriers of new substances

Manufacturability Constraints

Affordability (lower precursor efficiency in selective CVD)

- Reuse of molecules « available » from other industries
- # of synthesis steps from closest commodity materials (think of the LIGAND!)
- Yield of each steps

Defect Free Manufacturing

- No « usual suspects » in precursor/SAM impurity effects
- No standard metrology for blocking layer efficiency at early stage
- Acute sensitivity to impurities in intrinsic selective CVD processes

Illustrative examples

- SAM design (HT, coverage%...) for DoM
 - Monopodal SAM screening for DoM ALD
 - Chemistry consideration for HT SAMs
- Ru CVD growth selective inhibition
- Metal oxide etch back (selective etch, etch back)

Area Selective ALD (-OH protection based)

Design small. **Think big**

- Long and narrow tail
- 3 bonding sites

- Nb of attachment legs (1/2/3) & chemical function
- R chain length / backbone structure
- R chain functionality (-CF2-, -CH2-, ...)
- More exotic pods (di-pods for HT applications)
- → Highly combinatorial problem → need a screening tool

- Short and wide tail
- 1 bonding site

- Short and narrow tail
- · 2 bonding sites

IR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Screening Results example

Design small. **Think big**

Screening Results

Challenges

- Metrology of early « nucleation » (<< DL of XPS)
- Preferential appearance of defects at sharp edges
- Effect of SAM dispense method and exposure (additional variable)

Chemistry for Dipodal SAMs

Dipodal Silane Hydrolutic Stability compared to conventional silane

B. Arkles, et al. Chemistry - A European Journal, 2014, 20, 9442.

Enhanced selectivity CVD: RuCVD

Design small. **Think big**

SiO2 Si

Metal Oxide Dry Etch Back (Thermal, continuous)

Design small. **Think big**

(A/sec)

F-based	150∘C	200∘C	300∘C	350°C	400°C	425∘C
Nb ₂ O ₅	13.5	90.0	185	>330	>330	>330
Ta ₂ O ₅	0	67.7	247	>283	>283	>287
ZrO ₂	0	0	0.46	7.5	~370	>370
HfO ₂	0	0	0	1.9	14.7	E/D
TiO ₂	0	1.7	153	>315	>315	>315
Al ₂ O ₃	0	0	0	0	0	0
SiO ₂	0	0	0	0	0	0
TiN	0	Etched	Etched	Etched	Etched	Etched
TaN	0	0	Etched/Changed	Etched/Changed	Etched/Changed	Etched/Changed
SiN	7 0	-	0.46	3.8	5.1	12.8

AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Highlights

- Energetic & Toxic materials Stay safe
- Don't stop material innovation, but consider scaleability early
- Revisit old data / « failed experiments »
- Defectivity & impurity effects: just the beginning

THANK YOU

