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A brief history of Spatial Atomic Layer Deposition

• Spatial ALD was already described in the first ALD patents by Suntola and Antson in the ‘70s.  Since 
then it was forgotten and re-invented several times

• In the late 2000’s, it was “re-invented” at various locations

• E.g. Jusung (KOR), Eastman Kodak (US), ASM International (NL), Lotus Applied Technology (US), TNO (NL) and others

• At the 2011 ALD conference in Cambridge (US), the name “Spatial ALD” was officially introduced

• Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram & Vermeer, J. Vac. Sci. Technol. A 30 
(2012) 010802

Bedair at al, J. Cryst. Growth 178 (1997) 32 K. Kaiya, et al, J. Mater. Sci. Lett. 19, 2089 (2000). 
Suntola and Antson, US patent 4,058,430 (15 Nov. 1977)
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The 1st most asked question about Spatial ALD 

“How fast?”
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Key parameters in Atomic Layer Deposition

Growth per cycle (GPC)

• GPC of Al2O3 ≈ 0.1 nm/cycle

Deposition rate (R)

• GPC of 0.1 nm,  5 s cycle time: 𝑹 = 1.2 nm/min

𝑮𝑷𝑪 =
𝒏𝒎

𝒄𝒚𝒄𝒍𝒆 𝑹 =
𝑮𝑷𝑪

𝒄𝒚𝒄𝒍𝒆 𝒕𝒊𝒎𝒆

The growth per cycle ≠ deposition rate!
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Key parameters in Atomic Layer Deposition

• A more relevant parameter is Throughput: products produced per unit time
• E.g. wafers, plates, cells, kg’s of powder….

𝑛 = batch size

ℎ = film thickness

𝑅 = deposition rate

 𝑡𝑜 = overhead time; idle time, time required for loading/unloading, heating/cooling, etc

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝒘𝒂𝒇𝒆𝒓𝒔

𝒉𝒐𝒖𝒓
=

𝒏

𝒉
𝑹

+ 𝒕𝒐
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A typical ALD cycle contains:

1.  A precursor- and a co-reactant exposure step

• Takes ~100’s of ms

2. Purge steps after the precursor/co-reactant exposures
• Takes several seconds

• The timing of the individual steps are optimized and 
controlled through opening and closing valves

• All these steps add to the total cycle time

Time scales in Atomic Layer Deposition
The cycle time
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In Spatial ALD, the timing of the individual steps is determined by the Spatial ALD  
head design and substrate speed

Similar to conventional ALD, we can define precursor/co-reactant exposure times                
and “purge” times, adding up to the Spatial ALD cycle time

7

𝒕 =
𝑾

𝒗𝒔

Time scales in Spatial Atomic Layer Deposition
The cycle time
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In Spatial ALD, there is no reactor chamber to purge, but gas shields to separate the 
precursor and co-reactant

Time scales in Spatial Atomic Layer Deposition
The purge time
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In Spatial ALD, there is no reactor chamber to purge, but gas shields to separate the 
precursor and co-reactant

Time scales in Spatial Atomic Layer Deposition
The purge time

• Substrate moves from precursor to co-reactant:  
precursor is dragged along 

• An N2 flow is used to “push back” the drag flow to             
avoid mixing

• Modelling shows: a few mm of N2 shield is enough, 
corresponding to a few ms “purge time”

• (In practice, shield widths ≈ precursor slot widths)
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The precursor coverage 𝜃 during exposure is given by

𝑘: reaction rate coefficient; 𝑝: precursor partial pressure 

So the time to reach saturation is given by

Atmospheric pressure Spatial ALD: high partial pressure 
can be used to minimize exposure time

1 Torr partial pressure

10 Torr partial pressure

450 ms50 ms

𝜽 = 𝟏 − 𝐞𝐱𝐩(−𝒌 𝒑 𝒕𝐞𝐱𝐩 )

𝒕𝒆𝒙𝒑 ∝
𝟏

𝒑

Time scales in Spatial Atomic Layer Deposition
The precursor exposure time



Department of Applied Physics and Science Education11

Also the co-reactant exposure time can be reduced by increasing partial pressure

Special case: atmospheric pressure plasma enhanced Spatial ALD

See presentation by Mike van de Poll at 10:55 – 11:45

Time scales in Spatial Atomic Layer Deposition
The co-reactant exposure time
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In conventional, low pressure ALD, the 
cycle time is dominated by the purge time

Typical cycle times are in the 4-10 s range

In Spatial ALD, the purge- and exposure times 
can be reduced to 10’s-100’s of ms

Cycle times < 1s are possible

The cycle time in Spatial ALD
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• A deposition run takes more time than 
just the deposition

• e.g. loading & unloading, heating & cooling, 
pumping & venting, coffee-breaks etc.

• Overhead time can have a big impact on 
throughput if it is long compared to 
deposition time

13

Overhead time

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝒏

𝒉
𝑹

+ 𝒕𝒐

7 %

14 %

25 %

40 %
57 %
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Throughput examples

What does all this mean for throughput?

• Example: single wafer reactor
• 6 inch wafer, 10 nm thickness, GPC = 0.1 nm/cycle
• Spatial ALD: Exposure times = purge times
• Conventional ALD: purge times of 5 s each
• 120 s loading/unloading; all manual

• Deposition rate: 5-50x higher; Throughput: 3-7x higher 

• The difference between deposition rate and 
throughput is because of the overhead time

Spatial ALD

Spatial ALD

Conv. ALD

Conv. ALD
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Ways to increase throughput up to 100’s wafers/hr:

1. Increase cycles per passage

2. Use “batch mode”

3. Continuous movement
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How to maximize throughput

One cycle per passage
Single wafer

Multiple cycles per passage

Multiple wafers (“batch”)

Continuous movement 
(e.g. roll-to-roll) 
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How much precursor do we need?

• If we increase throughput, more precursor needs 
to be supplied

• Maximum precursor flow from a bubbler is limited   
by its vapor pressure:

• TMA: ~25 g/hr
• TDMASn: ~10 g/hr
• MeCpPtMe3: ~1 g/hr

• For low vapor pressure precursors: risk that 
throughput is limited by precursor supply

6” wafer

300 wafer
DRAM wafer

OLED panel

Flex PV

Battery 
electrode
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Let’s consider passivation of a graphite anode in a Li-ion battery using TMA

Assumptions

• Cathode thickness: 40 µm, effective surface area ~25 m2/m2

• Cathode foil roll width: 1 m; Manufacturing throughput: 90 m/min

For this throughput (2250 m2/min!), the estimated required                                    
TMA flow is ~ 100 g/hr per ALD cycle

• i.e. for 10 cycles in parallel, we need to supply 1 kg TMA per hour!

For these really high-throughput applications, precursor supply is one of 
the main engineering challenges

Case study



Department of Applied Physics and Science Education18

Scaling up Spatial ALD is a balancing act
• Precursor flow and partial pressure, substrate speed and 

ALD head design, substrate size and effective area, ....

Summary

The speed and throughput of Spatial ALD can be 10-100x                                                                          
higher than conventional ALD
• Short purge- and exposure times result in high deposition rates

• Optimized reactor design can minimize overhead times

For large effective surface area substrates, very large precursor flows are required
• This can be a limiting factor for low vapor pressure precursors 
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