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A brief history of Spatial Atomic Layer Deposition

* Spatial ALD was already described in the first ALD patents by Suntola and Antson in the ‘70s. Since
then it was forgotten and re-invented several times
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Suntola and Antson, US patent 4,058,430 (15 Nov. 1977) susceptor

Bedair at al, J. Cryst. Growth 178 (1997) 32 K. Kaiya, et al, J. Mater. Sci. Lett. 19, 2089 (2000).

* |nthe late 2000’s, it was “re-invented” at various locations
* E.g. Jusung (KOR), Eastman Kodak (US), ASM International (NL), Lotus Applied Technology (US), TNO (NL) and others

 Atthe 2011 ALD conference in Cambridge (US), the name “Spatial ALD” was officially introduced

* Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram & Vermeer, J. Vac. Sci. Technol. A 30
(2012) 010802
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The 15t most asked question about Spatial ALD

“How fast?”
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Key parameters in Atomic Layer Deposition

Growth per cycle (GPC)

Film thickness

4

nm
GPC =

cycle

Exposure time

GPC of Al,O; = 0.1 nm/cycle

Deposition rate (R)

Depoistion rate (nm/min)

GPC

~ cycle time

Cycle time

GPC of 0.1 nm, 5 s cycle time: R =1.2 nm/min

The growth per cycle + deposition rate!
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Key parameters in Atomic Layer Deposition

* A more relevant parameter is Throughput: products produced per unit time

E.g. wafers, plates, cells, kg’s of powder....

Throughput =

wafers

hour

=~y

n
+ L,

n = batch size
h = film thickness

R = deposition rate

t, = overhead time; idle time, time required for loading/unloading, heating/cooling, etc
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Time scales in Atomic Layer Deposition

The cycle time
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A typical ALD cycle contains:

1. A precursor- and a co-reactant exposure step
* Takes ~100’s of ms

2. Purge steps after the precursor/co-reactant exposures
e Takes several seconds

* The timing of the individual steps are optimized and
controlled through opening and closing valves

e All these steps add to the total cycle time
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Time scales in Spatial Atomic Layer Deposition
The cycle time

In Spatial ALD, the timing of the individual steps is determined by the Spatial ALD
head design and substrate speed

[Ill] -

- Substrate >

Similar to conventional ALD, we can define precursor/co-reactant exposure times
and “purge” times, adding up to the Spatial ALD cycle time
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Time scales in Spatial Atomic Layer Deposition
The purge time

In Spatial ALD, there is no reactor chamber to purge, but gas shields to separate the
precursor and co-reactant

Gas Gas Gas
shield  Precursor  ghiald Plasma shield

\ Exhaust Exhaust \ Exhaust ‘ Exhaust \
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Time scales in Spatial Atomic Layer Deposition
The purge time

In Spatial ALD, there is no reactor chamber to purge, but gas shields to separate the
precursor and co-reactant

* Substrate moves from precursor to co-reactant:
precursor is dragged along

« An N, flow is used to “push back” the drag flow to 2 Strate\?
avoid mixing

* Modelling shows: a few mm of N, shield is enough,
corresponding to a few ms “purge time”

* (In practice, shield widths = precursor slot widths)
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Time scales in Spatial Atomic Layer Deposition
The precursor exposure time

The precursor coverage 6 during exposure is given by

10 =1 — exp(—kp tex) | [

k: reaction rate coefficient; p: precursor partial pressure

1 Torr partial pressure

1
OC_

Growth per cycle (nm)

So the time to reach saturation is given by Lexp

450 ms v

v
0 100 200 300 400 500

Precursor exposure time (ms)

Atmospheric pressure Spatial ALD: high partial pressure
can be used to minimize exposure time
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Time scales in Spatial Atomic Layer Deposition
The co-reactant exposure time

Also the co-reactant exposure time can be reduced by increasing partial pressure

Special case: atmospheric pressure plasma enhanced Spatial ALD

1000
See presentation by Mike van de Poll at 10:55-11:45 100

= atmospheric pressure
- = low pressure
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Aspect ratio
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The cycle time in Spatial ALD

In conventional, low pressure ALD, the
cycle time is dominated by the purge time
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Typical cycle times are in the 4-10 s range
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In Spatial ALD, the purge- and exposure times
can be reduced to 10’s-100’s of ms

precursor -D D D

pues ﬂ Dﬂ Dﬂ Dvme

Cycle times < 1s are possible
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Overhead time

* A deposition run takes more time than
just the deposition

* e.g.loading & unloading, heating & cooling,
pumping & venting, coffee-breaks etc. 7%
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 Overhead time can have a big impact on
throughput if it is long compared to
deposition time
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Throughput examples

What does all this mean for throughput?

 Example: single wafer reactor

6 inch wafer, 10 nm thickness, GPC = 0.1 nm/cycle
Spatial ALD: Exposure times = purge times
Conventional ALD: purge times of 5 s each

120 s loading/unloading; all manual

* Deposition rate: 5-50x higher; Throughput: 3-7x higher

* The difference between deposition rate and
throughput is because of the overhead time
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How to maximize throughput

Ways to increase throughput up to 100’s wafers/hr:

1. Increase cycles per passage [I]]]]]]]

2. Use “batch mode” | '

3. Continuous movement

Multiple cycles per passage

[I]]] Multiple wafers (“batch”)

Single wafer . . |

Continuous movement
(e.g. roll-to-roll)
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How much precursor do we need?

* If we increase throughput, more precursor needs 1000 sl o vvisial e il
to be supplied

Battery
electrode

 Maximum precursor flow from a bubbler is limited
by its vapor pressure:
e TMA:~25g/hr

e TDMASN: ~10g/hr
* MeCpPtMe,: ~1 g/hr
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* For low vapor pressure precursors: risk that _ 1 10 100 1000 10000
throughput is limited by precursor supply Throughput (m?/hr)

Required precursor (g/hr)
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Case study

Let’s consider passivation of a graphite anode in a Li-ion battery using TMA

Assumptions

 Cathode thickness: 40 um, effective surface area ~25 m?/m?
* Cathode foil roll width: 1 m; Manufacturing throughput: 90 m/min

For this throughput (2250 m?/min!), the estimated required
TMA flow is ~ 100 g/hr per ALD cycle

* j.e.for 10 cycles in parallel, we need to supply 1 kg TMA per hour!

For these really high-throughput applications, precursor supply is one of
the main engineering challenges
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Summary

Scaling up Spatial ALD is a balancing act

* Precursor flow and partial pressure, substrate speed and
ALD head design, substrate size and effective area, ....

The speed and throughput of Spatial ALD can be 10-100x |
higher than conventional ALD

* Short purge- and exposure times result in high deposition rates
* Optimized reactor design can minimize overhead times

For large effective surface area substrates, very large precursor flows are required
e This can be a limiting factor for low vapor pressure precursors
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