SPARKNANO

**Design challenges and solutions for Spatial ALD equipment** 

Jeroen Smeltink Systems Architect

Spatial ALD day Tu/e 2022

Since June 1<sup>st</sup> 2022:

New markets, new products, new customers  $\rightarrow$  <u>New name</u>

# SALDtech C SPARKNANO

www.spark-nano.com

CONFIDENTIAL

**SPARK**NANO

# **SparkNano introduction**



**SparkNano** (founded in 2018) is a spin-off company of TNO, located in Eindhoven, the Netherlands

We develop and sell large-area Spatial Atomic Layer Deposition technology

Our technology enables our customers to apply better, cheaper and higher performing materials for the **electrolysis**, **fuel cell**, **battery**, **display** and **solar** 

markets



We provide state of the art **lab- and fab-equipment** combined with extensive process and application support





CONFIDENTIAL

**SPARK**NANO

#### Our products

# **Spatial-ALD from lab-to-fab**

From versatile LAB tools to highly efficient mass production FAB tools.



### LabLine series

versatile and flexible tool for process development and pilot production



### Vellum series

mass production tool for flat, sheet-to-sheet applications



### Omega series

mass production tool for flexible substrates – roll-to-roll applications



# A mechanical engineer's perspective...

- Today, we will see many examples of what processes, materials and application can be done by Spatial ALD
- But: to do Spatial ALD, you need to have a working Spatial ALD reactor
- There are quite some mechanical engineering challenges that need to be tackled to design and build a Spatial ALD reactor
  - Moving substrates/injectors with high precision at elevated temperatures
  - Distributing gasses and precursors with high uniformity
  - Handling various kinds and sizes of substrates
  - All under clean, inert and safe operating conditions
- Today, we will show you Spatial ALD from a different perspective: that of the mechanical engineer

# **Engineering a Spatial ALD reactor**

- A lot of design aspects have to be taken into account during the development of a spatial ALD system
- To meet process requirements such as process temperature, gas flow uniformity, contamination, deposition speed and many more the engineer must be aware of interactions between multiple physical domains and find a well balanced solution.
- To give you an impression, we will show two examples of design challenges and their solutions:
  - Thermo-mechanical aspects
    Ensuring uniform gas flows



**SPARK**NANO

### **Thermo-mechanical deformations**

- Spatial ALD is often performed at elevated temperatures
- Due to thermal expansion, components like injectors and substrate tables expand upon heating
- If this leads to deformations larger than the process gap, we are in trouble...
  - Leads to flow non-uniformities and thickness variations
  - Worst case: a crash...
- Thermo-mechanical modelling is a useful tool prevent problems on forehand



### **Thermo-mechanical deformations**

- ANSYS can be used to do thermo-mechanical modelling
- In case of a uniform temperature increase upon heating, all parts will expand uniform and the gap is not affected



**SPARK**NANO

### **Thermo-mechanical behaviour**

- In reality, thermal gradients will be present due to heat losses
  - The heat losses are caused by practical limits of insulating the reactor



- Thermal gradients will cause internal stresses and deformations
- These deformations can be large enough to cause problems

### **Thermo-mechanical behaviour**

Temperature gradients can be minimized by:

- 1. Use proper thermal insulation
- 2. Using materials with a high thermal heat conductivity coefficient ( $\lambda$ ) and low thermal expansion coefficient ( $\alpha$ )
  - Aluminium,  $\lambda$ = 240 W/mk,  $\alpha$  = 24e-6 K<sup>-1</sup>
  - Stainless steel ,  $\lambda$ = 25 W/mk,  $\alpha$  = 16e-6 K<sup>-1</sup>)
- However, the choice of material also depend on other factors, like:
  - Max operating temperature
  - Corrosion resistance
  - Manufacturing costs



**SPARK**NANO

### **Thermo-mechanical behaviour**

#### Steps taken to improve:

- Substrate table and injector head made of aluminium instead of stainless steel
- Insulation added around injectorhead and substrate table
- Heat losses by mechanical interfaces (e.g. supports, nuts and bolts) minimized by choosing materials with low thermal conductivity

#### **Results:**

- Substrate table deformations reduced a factor 100 compared to non-insulated stainless steel table
- by using materials with a low thermal conductivity for the mechanical supports a standard linear stage can be used



- A high film thickness uniformity is important for many Spatial ALD applications
- Non-uniform gas flows carrying precursors can lead to thickness non-uniformity
- Therefore, we need to distribute gasses as uniformly as possible



**SPARK**NANO

- Many Spatial ALD injectors use large pressure distribution chambers in combination with narrow slits
  - Narrow slits have a large flow restriction, so should help to evenly divide flows, just like in your showerhead at home
- However, making long narrow slits for large area Spatial ALD is not that easy; there will be manufacturing tolerances.
  - achieving an accuracy of +/-10 micron on a slit with a width of 100 micron is already a challenging accuracy
- As the flow through a slit varies as Q ∝ w<sup>3</sup>, a slit width variation of 10% results in flow variations of 33%!.



**SPARK**NANO

- Also, where you connect the injector to the gas lines matters
- An off-centred gas line connection can be desirable when space is limited, but can lead to large flow variations
  - There are many examples where the position of gas lines / exhaust lines can be "seen" on the substrate as areas with smaller or larger film thickness
- Computational Fluid Dynamics (CFD) modelling and network models can be used to check designs on flow uniformity



# Modeling gas flows

 Network models are "quick and dirty" models which give a good first impression



- **CFD modelling** can be done using commercially available software
  - E.g. Fluent, ANSYS
- Outcomes include 3D information of pressure and flow variations based on injector design and selected boundary conditions
- Very valuable, but not always easy to do and time consuming



**SPARK**NANO

#### Steps taken to realize uniform gas flows:

- Use large pressure distribution chambers
- Make slit widths small enough to ensure uniform outflow within given tolerances
- Make first order calculation with network model and iterate design
- Perform CFD simulations as next step

#### **Result:**

Uniform gas flow distribution!



**SPARK**NANO

### Summary and conclusions

- There are many design challenges mechanical engineers need to solve before a Spatial ALD tool can be used
- Thermo-mechanical deformations and gas-flow uniformity are just two examples
- Todays examples were simplified, but it does demonstrate our way of working:
  - 1. Use customer requirements as a starting point
  - 2. Use common sense and basic engineering knowledge to make mechanical designs
  - 3. Evaluate designs using various modelling tools
    - From back-of-the-envelope to complex CFD and thermomechanical models
  - 4. Improve the design, re-do step 3 until confident
  - 5. Build and test. Now it's up to the process engineers...





Thank you for your attention!